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Abstract. The onset of steady Bénard-Marangoni convection in two horizontal liquid layers of electrically con-
ducting immiscible fluids subjected to a uniform vertical magnetic field and temperature gradient is analysed by
means of a combination of analytical and numerical techniques. The free surface can be either deformable or
nondeformable and the interface between the fluids is always assumed to be flat. The effect of the lower layer on
the critical values of Rayleigh, Marangoni and wave numbers for the onset of steady convection is investigated.
When the free surface is nondeformable, the critical parameters for the onset of pure Marangoni convection are
increased, whereas for the onset of pure Bénard convection they are decreased compared to the single-layer model.
The results for a single-layer and for two-layers are qualitatively similar for Bénard-Marangoni convection when
the free surface is deformable. All disturbances can be stabilized with sufficiently strong magnetic field when the
free surface is nondeformable. If the free surface is allowed to deform and gravity waves are excluded, then the
layers are always unstable to disturbances with sufficiently small wave number with magnetic field. Inclusion of
gravity waves has a stabilizing effect on certain disturbances of small wave number in the presence of weak or
moderate magnetic field.
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1. Introduction

Buoyancy-driven instability has been well established since the pioneering work of Rayleigh
[1], who showed that convection, called Bénard convection, occurs only when the Rayleigh
number exceeds a critical value. On the other hand, Pearson [2] showed that surface-tension-
gradient effects can also cause convection, usually called Marangoni convection, when the
Marangoni number exceeds a critical value.

The combined problem, including both buoyancy and surface-tension effects, was treated
by Nield [3] in the the limit of large surface tension who found that for steady convection the
two destabilizing agencies reinforce one another and are tightly coupled. Davis and Homsy [4]
studied the effect of weak free-surface deformation on critical Rayleigh and Marangoni num-
bers for the onset of steady convection. They concluded that the presence of a deformable free
surface can lead to a stabilization of Bénard convection and the destabilization of Marangoni
convection relative to the case of a planar free surface. Takashima [5, 6] investigated the
effect of stronger free-surface deformation on the onset of steady and oscillatory Marangoni
convection, respectively.

The effect of a uniform vertical magnetic field on pure Bénard convection was described
by Chandrasekhar [7] who demonstrated that the presence of the magnetic field increases the
critical value of Rayleigh number for the onset of both steady and overstable convection, and
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so has a stabilizing effect on the layer. Nield [8] analyzed the effect of a magnetic field on both
Bénard and Marangoni convection by extending his previous work [3] to include a vertical
magnetic field. He found that the effect of increasing the strength of the magnetic field was
to monotonically increase the critical values of Rayleigh and Marangoni numbers and hence
stabilize the layer. Sarma [9] investigated the effect of magnetic field on the onset of steady
Marangoni convection with deformable free surface and Bénard-Marangoni convection for
a variety of thermal and magnetic boundary conditions was considered in [10]. Wilson [11]
pointed out the incorrectness of the boundary condition at the deformable free surface used
by Sarma [9, 10]. Wilson [12] investigated the effect of magnetic field on the onset of steady
Bénard-Marangoni convection in a horizontal layer of fluid, when the free surface is deform-
able with conducting lower rigid boundary condition and concluded that the presence of a
magnetic field always has a stabilizing effect on the layer. Treating the Marangoni number as
the critical parameter, he showed that, if the free surface is nondeformable, then any particular
disturbance can be stabilized with a sufficiently strong magnetic field, but, if the free surface
is deformed and gravity waves are excluded, then the layer is always unstable to small wave
number disturbances with or without the magnetic field. Including gravity has a stabilizing
effect on the long wave-length modes, but not all disturbances can be stabilized, no matter
how strong the magnetic field is. Thess and Nitschke [13] investigated the spatial structure of
the marginal mode for steady Marangoni convection in the limit of strong magnetic field.

The onset of Marangoni convection including gravity waves (but not buoyancy), in two
initially motionless viscous immiscible fluids confined between horizontal isothermal solid
surfaces, has been investigated by Smith [14] who found instability for heating vertically
above and below. Zeren and Reynolds [15] included buoyancy forces in the analysis of Smith
[14] and concluded that stability depends strongly on the ratios of the properties of the fluids,
the total depth of the layer and the depth fraction of each fluid. Furthermore, the addition of
the stable density gradient increases the critical Marangoni number for moderate and large
wave-number disturbances. In all the studies referred to above, a temperature gradient applied
perpendicular to the free surface induces the convective motion. On the other hand, Crespo
and del Arcoet al. [16] and Doi and Koster [17] have studied thermocapillary convection due
to temperature gradient applied parallel to the interfaces, in two immiscible liquid layers in a
rectangular cavity with flat interfaces. They obtained an analytical solution, assuming infinite
horizontal layers in order to understand the basic physics of the liquid encapsulation. Recently
Biswal and Rao [18] have extended these ideas to deformable interfaces. For the infinite layers
considered here, the deformation of the free surface corresponds to nonzero small Crispation
number. They concluded that the assumption of flat interface and free surface is good for
certain fluids (see also Doi and Koster [17]). Therefore, the assumption of flat interface is
reasonable for the case of large interface surface tension, even when the free surface is slightly
deformable.

In the present paper a linear stability analysis is carried out for two initially motionless,
viscous, immiscible and infinite fluid layers bounded by a horizontal isothermal solid surface
below and a free surface above. We mainly assume that both the interface and free surface
are flat, but also give some results for the case of a slightly deformable free surface. Here we
consider the onset of steady Bénard-Marangoni convection for a system heated from below.
Under the application of a uniform vertical magnetic field the influence of Rayleigh number
and Chandrasekhar number on the critical Marangoni number is examined. The primary in-
terest is to know how marginal stability characteristics are modified by including Marangoni
and Rayleigh numbers simultaneously in the presence of a magnetic field for a two-layer
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Figure 1. Geometry of the unperturbed state. They-axis is normal in to the page.

system. The two-layer system introduces a large number of dimensionless parameters, but
only a selected and exemplifying set of results are displayed.

2. Mathematical formulation

Consider two unbounded horizontal layers of quiescent fluid, one lying above the other as
shown in Figure 1, subject to a uniform vertical magnetic field of strengthH in which the
lower rigid surface is maintained at constant temperatureθ1 and the free surface, which is
bounded with a passive electrically nonconducting gas of negligible density, is maintained
at constant temperatureθ2. A Cartesian coordinate system is chosen withx, y-axes in the
plane of the interface andz-axis vertically upwards. Fluid 1 is bounded below byz = −d1

and the free surface of fluid 2 which is above the fluid 1, is atz = d2. It is assumed that
the interface surface tension is large enough to make the fluid-fluid interface, atz = 0, flat
when motion occurs, whereas the free surface is deformed and given byz = d2 + f (x, y, t).
Let ρi, κi, µi, ζi , νi, µ̄i , σ̄i and ηi = 1/4πµ̄i σ̄i be the densities, the thermal diffusivities,
the dynamic viscosities, the thermal conductivities, the kinematic viscosities, the magnetic
permeabilities, the finite electrical conductivities and the nonzero electrical resistivities of the
fluids respectively. In what follows subscripti takes values 1 and 2 identifying the variables of
the lower and the upper layers, respectively. In order to avoid Rayleigh-Taylor instability, we
assumeρ1 > ρ2. In the initial state, the temperatures, and hence the densities, vary linearly
in the z direction and the surface tensions at the free surface and the interface are uniform.
The surface tensions may vary along the free surface and the interface, but all other properties
are assumed to be uniform in each medium. The surface tensions at the interface and the free
surface are given by the linear equations

σ I = σ Ic − σ IT (T − θ0) at z = 0, (1)

σF = σFc − σFT (T − θ2) at z = d2 + f (x, y, t), (2)

respectively, whereθ0 is the interface temperature in the conductive state, the positive con-
stantsσ IT and σFT are the surface-tension temperature coefficients and,σ Ic and σFc are the
surface tensions at the appropriate reference temperatures. In (1) and (2) and in what follows
superscriptsI andF indicate the corresponding quantities at the interface and the free surface,
respectively.
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3. General flow equations and boundary conditions

The complete equations of motion for incompressible, electrically conducting fluids in the
presence of a magnetic field subject to the Boussinesq approximation are

∂U i

∂t
+ (U i .∇)U i = − ρi

ρci
g − 1

ρci
∇5i + νi∇2U i + µ̄i

4πρci
(H i .∇)H i , (3)

∂H i

∂t
+ (U i .∇)H i = (H i .∇)U i + ηi∇2H i , (4)

∂Ti

∂t
+ U i .∇Ti = κi∇2Ti, (5)

∇.U i = 0, (6)

∇.H i = 0, (7)

whereU i are the fluid velocities,H i are the magnetic fields,Ti are the temperatures,g =
(0,0, g) is the external gravity field and5i are the magnetic pressures, which are defined to
be5i = Pi + µ̄i |H i|2/8π , wherePi are the fluid pressures. The derivation of (3) to (7) is
given in Chandrasekhar [7, pp. 160–161]. The densities of the fluids are given by

ρi = ρci(1− αi(Ti − θi)), (8)

whereαi are the constant coefficients of volume expansion and theρci are values of the
constant densities at the reference temperaturesθi.

The external magnetic field in the region below the fluid 1 is give byH e
1 = ∇φ1, where

∇2φ1 = 0 andφ1 = 0 atz = −∞. Similarly, for the region above the free surfaceH e
2 = ∇φ2,

where∇2φ2 = 0 and φ2 = 0 atz = ∞. These boundary conditions apply to nonconducting
exteriors, see Chandrasekhar [7, pp. 162–163].

The boundary conditions for the problem are given by

U1 = 0, T1 = θ1,H 1 = (0,0,H)+∇φ1 (9)

at the lower boundaryz = −d1,

U1.nI = U2.nI = 0, (U 1− U2).tIx = 0, (U 1− U2).tIy = 0, (10)

ζ1T1nI = ζ2T2nI , T1 = T2, (11)

(S
(1)
jk − S(2)jk )nIknIj = 0, (S(1)jk − S(2)jk )nIk tIxj = σ ItIx , (S

(1)
jk − S(2)jk )ηIk tIyj = σ ItTy , (12)

H 1 = H 2 (13)

at the interfacez = 0 and

U2.nF = ∂f (x, y, t)

∂t
, S

(2)
jk n

F
k t
F
xj = σFtFx , S

(2)
jk n

F
k t
F
yj = σ ftFy , (14)
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S
(2)
jk n

F
k n

F
j = σFK, ζ2T2nF + γ (T2− θg) = 0, (15)

H 2 = (0,0,H)+∇φ2 (16)

at the free surfacez = d2+ f (x, y, t).
In (15) the symbolsγ , θg andK are the heat-transfer coefficient between the free surface

and the gas lying above, the ambient temperature of the above lying gas and the free surface
curvature, respectively. The components of the stress tensorsS

(i)
jk of the fluids, in the usual

tensor notation, are defined by

S
(i)
jk = −Piδjk + 2µiε

(i)
jk ,2ε

(i)
jk = (u(i)j,k + u(i)k,j ), (17)

whereδjk is Kronecker delta. Here, we have used superscript(i), i = 1,2 indicating the
fluid 1 and 2. The subscriptsnI , tIx , tIy , nF , tFx andtFy represent the normal and the tangential
derivatives at the interface and the free surface. Derivation of the above boundary conditions is
given in Smith [14] and Chandrasekhar [7, pp. 162–163]. Equation (10) and the first condition
of (14) are the kinematic boundary conditions at the interface and the free surface, respectively.
Note that, since the fluids have nonzero electrical resistivity,ηi 6= 0, all the components of the
magnetic field are continuous across the interface and the free surface and, consequently, there
are no net magnetic stresses at the interface and the free surface. The balance of stress at the
interface and the free surface in the direction are given by the first conditions of (12) and (15),
respectively. The first condition of (12) implies that thePi are continuous across the interface.
The jump in the normal stress across the free surface is balanced by the surface tension times
the curvature as seen from the first condition of (15). Similarly, the tangential stress balance
at both the interface and the free surface in thex andy directions are given by the second and
the third conditions of (12) and (14), respectively.

4. Basic state solutions

In the basic state the heat flow is due only to conduction and the fluids are at rest. In this
caseU i = 0, the magnetic field is uniform,H = (0,0,H), φi = 0, the free surface is flat,
f (x, y, t) = 0 and there is a uniform adverse temperature gradientβi across each layer, so
Ti = θ0+ βiz, where

θ0 = θ1ζ1d2+ θ2ζ2d1

ζ1d2+ ζ2d1
, β1 = − (θ1− θ2)ζ2

ζ1d2+ ζ2d1
, β2 = − (θ − θ2)ζ1

ζ1d2 + ζ2d1
.

PressuresP1 andP2, andθg are given by

P1 = P0 + gρc2d2

(
1+ α2β2d2

2

)
− gρc1z

(
1+ α1β1

2
(z + 2d1)

)
, (18)

P2 = P0 + gρc2(d2− z)
(

1+ α2β2

2
(d2 − z)

)
, (19)

θg = θ2+ κ2β2

γ
, (20)
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Table 1. Definitions of nondimensional parameters and ratios.

Rai = −gαiβid4
2/νiκi Rayleigh numbers

Ma1 = −σ IT β1d
2
2/µ1κ1 Marangoni number at the interface

Ma2 = −σFT β2d
2
2/µ2κ2 Marangoni number at the free surface

Pri = νi/κi Prandtl numbers

Pmi = ηi/κi Magnetic Prandtl numbers

Cr= µ2κ2/σ
F
c d2 Crispation number

Qi = µ̄iH2d2
2/4πµiηi Chandrasekhar numbers

Bi = γ d2/ζ2 Biot number

Bo= ρc2gd2
2/σ

F
c Bond number

ρ = ρc2/ρc1 density ratio

µ = µ2/µ1 viscosity ratio

ζ = ζ2/ζ1(= 1/β = β1/β2) thermal conductivity ratio

κ = κ2/κ1 thermal diffusivity ratio

η = η2/η1 electrical resistivity ratio

µ̄ = µ̄2/µ̄1 magnetic permeability ratio

d = d1/d2 depth fraction

α = α2/α1 volume expansion ratio

λ = σ I
T
/σF
T

surface tension gradient ratio

whereP0 is the constant atmospheric pressure.

5. Linearized normal mode analysis

We introduce nondimensional variables, takingd2, κ2/d2, H,−β2, ρc2κ2
2/d

2
2 and d2

2/κ2 as
the appropriate scales for the unit of length, velocity, magnetic field, temperature gradient,
pressure and time, into the governing equations and the boundary conditions. We obtain the
17 nondimensional groups given in Table 1. Note that some of the nondimensional para-
meters for the fluid 1 and 2 are related through:Q1 = (Q2µη)/µ̄, Ma1 = λµκζ Ma2,
Ra1 = (νκζ Ra2)/α, Pr1 = (κ Pr2)/ν and Pm1 = (κ Pm2)/η for given nondimensional ratios.

The linear stability of the basic state is analyzed in the usual way by seeking a solution for
any physical quantity8(x, y, z, t) in normal mode form

8(x, y, z, t) = 80(z)+ 8́(z) e(pt+iax+iayy), (21)

where80 is the value of8 in the basic state. In general, the temporal exponentp is complex;
ax anday are the wave numbers in thex andy directions, respectively. We have takenúi , v́i
andẃi for the components of the perturbed velocities andh́ix, h́iy andh́iz for the components
of the perturbed magnetic fields in the convective motion.

Substituting these forms in the governing equations and the boundary conditions, we ob-
tain linearized equations, neglecting the products and the squares of the perturbations. After
eliminating úi (z), v́i (z), h́ix(z) and h́iy(z) from the linearized forms of (3) to (5), using the
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linearized forms of (6) and (7), we have the following equations from which to determine the
stability of the two-layer system.

(D2− a2)

[(
D2− a2− κp

Pr1

)
ẃ1+ Q1 Pm1

κ
Dh́1z

]
− Ra1βa

2

κ
T́1 = 0, (22)

(D2− a2)

[(
D2− a2− p

Pr2

)
ẃ2+Q2 Pm2Dh́2z

]
− Ra2a

2T́2 = 0, (23)

(Pm1(D
2− a2)− κp)h́1z + κDẃ1 = 0, (24)

(Pm2(D
2− a2)− p)h́2z +Dẃ2 = 0. (25)

(D2− a2 − κp)T́1+ κζ ẃ1 = 0, (26)

(D2− a2 − p)T́2+ ẃ2 = 0, (27)

wherea = (a2
x + a2

y)
1/2, the total wave number in the(x, y) plane andD = d/dz, differen-

tiation with respect toz. Combining the first two linearized equations derived from (3), using
the continuity equations for the velocities and the magnetic fields, we obtain an expression for
the fluid pressure

Ṕ2 = (Pr2(D2− a2)− p)Dẃ2+Q2 Pr2 Pm2(D
2− a2)h́2z

a2
. (28)

The expressions for external magnetic fieldsφ́i , which satisfy(D2−a2)φ́i = 0, andφ́i = 0
at z = ±∞, are given by

φ́1(z) = B1 ea(z+d), φ́2 = B2 ea(1−z), (29)

whereBi are arbitrary complex constants.
The corresponding boundary conditions are

Dẃ1 = ẃ1 = T́1 = 0, (30)

(D − a)h́1z = 0, (31)

at z = −d,

ẃ1 = ẃ2 = 0,Dẃ1 = Dẃ2, T́1 = T́2,DT́1 = ζDT́2, (32)

κ(D2+ a2)ẃ1− µκ(D2+ a2)ẃ2+ a2 Ma1βT́1 = 0, (33)

h́1z = h́2z,Dh́1z = Dh́2z (34)

at z = 0 and

ẃ2 = pf́ , (35)

196762.tex; 6/05/1999; 13:06; p.7



392 P. C. Biswal and A. R. Rao

(D2+ a2)ẃ2+ a2 Ma2(T́2− f́ ) = 0, (36)

−Cr(Pr2(D
2− 3a2 −Q2)− p)Dẃ2− CrQ2 Pr2ph́2z + Pr2a

2(a2+ Bo)f́ = 0, (37)

DT́2+ Bi(T́2− f́ ) = 0, (38)

(D + a)h́2z = 0 (39)

atz = 1. Equation (37) is deduced from (15) by use of the value ofṔ2 and (25). We obtain the
convection problem for a single layer as studied by Wilson [12] for finite Bi from our analysis
by takingζ = 0 andd = 0.

6. Solution of the linearized equations

The complete solution of the linear stability problem is determined, once we have solved
(22) to (27) subject to the boundary conditions given in (30) to (39). The parameterp is the
eigenvalue associated with a particular disturbance. If<e(p) > 0, the associated disturbance
grows and the initial state is linearly unstable to that disturbance; if<e(p) < 0, the disturbance
decays and the initial state is linearly stable. Disturbances with<e(p) = 0 are marginally
stable. In the marginally stable stateIm(p) need not be zero and so oscillatory disturbances
may exist. Exchange of stabilities has been proved to be valid for Bénard convection subject to
a variety of boundary conditions by Pellew and Southwell [20] and for Marangoni convection
in one fluid by Vidal and Acrivos [21]. Many of the investigations are concerned with the
steady convection, but the first to investigate the possibility of an instability setting in an oscil-
latory convection was Takashima [6]. Later Wilson [11, 22] extended Takashima’s [6] analysis
by applying magnetic field and found overstability when the free surface is deformable and
layer is cooled from below (negative Marangoni number). However, Sternling and Scriven
[23] found both the stationary and the oscillatory marginal states for a two-fluid concentra-
tion dependent Marangoni convection model. Chandrasekhar [7], Kaddame and Lebon [24]
have shown that exchange of stabilities does not hold for pure Bénard and pure Marangoni
problems respectively. We have assumed that the principle of exchange of stabilities is valid
for the present problem. For the sake of simplicity we consider only the caseIm(p) = 0.
If Im(p) = 0 assumed and instability is found, the apparent critical Marangoni number for
steady convection must be an upper bound on the true critical Marangoni number. In the
present work we shall assume the exchange of stabilities and so setp = 0 at the onset of
convection. Eliminatinǵhiz from the coupled equations, we obtain forẃi andT́i as

κ((D2− a2)2−Q1D
2)ẃ1 = Ra1βa

2T́1, (40)

((D2− a2)2−Q2D
2)ẃ2 = Ra2a

2T́2. (41)

Equations (26) and (27) reduce to

(D2− a2)T́1+ κζ ẃ1 = 0, (42)

(D2− a2)T́2+ ẃ2 = 0. (43)

196762.tex; 6/05/1999; 13:06; p.8



The onset of steady Bénard-Marangoni convection in a two-layer system393

The linearized problem for the onset of steady Bénard-Marangoni convection is solved by
seeking solutions of the form

ẃi(z) = AiCi eξiz, T́i (z) = Ci eξiz,

where exponentsξi, coefficientsAi andCi are to be determined. Substituting these forms in
(40)–(43) and eliminatingAi andCi, we have

(ξ2
i − a2)((ξ2

i − a2)2−Qiξ
2
i )+ Raia

2 = 0, (44)

which gives six distinct rootsξij with j = 1 to 6. Denoting the values ofAi andCi corres-
ponding toξij byAij andCij , from (42) and (43), we get

A1j = −β
κ
(ξ2

1j − a2), A2j = −(ξ2
2j − a2). (45)

The general solution to the linear stability problem is therefore

ẃi(z) =
6∑
j=1

AijCij eξij z, T́i(z) =
6∑
j=1

Cij eξij z. (46)

From the boundary conditions (35) and (37) withp = 0, we get the free-surface deflection
evaluated atz = 1 as

f́ = Cr
(D2− 3a2 −Q2)Dẃ2

a2(a2 + Bo)
. (47)

Omitting the magnetic field boundary conditions given in (31), (34) and (39), we are left with
twelve boundary conditions given in (30), (32), (33), (35), (36) and (38) to determine the
twelve unknownsCij , i = 1, 2, j = 1 to 6 (up to an arbitrary multiplier). Substitution of
above expressions foŕwi(z) andT́i (z), given in (46), in the twelve boundary conditions gives
rise to a 12× 12 complex determinant of coefficients of unknownsCij , which after some
simplification can be written in the form

κD1+ a2βMa1D2+ κa2 Ma2D3+ a4βMa2 Ma1D4 = 0. (48)

The dispersion relation for marginal stability (48) depends on all the nondimensional para-
meters except Pri, Pmi and is quadratic in Marangoni number, Ma1 or Ma2. The four 12× 12
complex determinantsDr , r = 1,2,3,4 depend on all the other parameters of the problem
except Ma1 and Ma2. The elements of determinantsDr = |drl,m| can be obtained in a straight
forward way and they are not given here as that adds to the length of the paper.

Here it is observed thatD1 andD2 are independent of Cr and Bo when Bi= 0 and,D3 and
D4 are independent of Bi. When Bi= 0 and the Marangoni numbers are zero, (48) reduces to
D1 = 0, which implies the onset of steady Bénard convection is independent of surface tension
of the free surface when fluid-fluid interface is flat, and is analogous to the single layer case.
Wilson [19] has pointed out that in agreement with the present results the qualifier ‘when
Nu = 0’ should be added to the line ‘one immediate consequence of this is that the onset
of steady Bénard convection(M = 0) is independent of Cr and Bo’ in [12]. The complete
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solution of the linear stability problem is given by (44) and (48). Equation (44) is solved for
ξij using Numerical Algorithms Group (NAG) routine CO2AGF. In order to prevent numerical
difficulties arising from the exponential terms present in the determinantsDr , we multiplied
each columnm whenm 6 6 by an exponential factor with exponent min(0,−<e(−dξ1m)) and
whenm > 7 by min(0,−<e(ξ2n)) where<e(.) denotes the real part of a complex quantity.
The complex valued determinantsD1,D2,D3 andD4 are evaluated numerically by using
NAG routine FO3ADF. Equation (48) is solved for Marangoni number by use of NAG routine
CO2AFF.

7. Discussion of results

The marginal curves in the(a,Ma2) plane are obtained by (48) where Ma2 is a function of the
parametersa, Ra2, Cr,Q2, Bo, Bi, d, λ, ρ, µ, ζ , α, η, µ̄ andκ. There are two values for Ma2,
one of them being always positive and the other is either positive or negative giving rise to
two marginal curves. The curve with negative values of the Marangoni number corresponds
to a system heated from above and therefore is not possible for a system heated from below.
When both values of Ma2 are positive, both marginal curves possess global minima. For a
given set of parameters the critical Marangoni number for the onset of steady convection
is defined as the minimum of the global minima of both marginal curves. We denote this
critical value by Ma2c and the corresponding critical wave number byac. All disturbances
with Ma2 < Ma2c are stable and there exist unstable disturbances for Ma2 > Ma2c. The
Bénard convection (48) becomes a transcendental equation in Ra2 when the other parameters
are prescribed. Similarly, the critical Rayleigh number Ra2c for a given set of parameters
is defined as the minimum of global minima of each marginal curve in the(a,Ra2) plane.
Here also, the region above the marginal stability curves represent unstable modes and the
region below the curves represents stable modes. We present here the critical Rayleigh number
Ra2c, the critical Marangoni number Ma2c for fluid 2 only as one can trivially calculate the
corresponding critical parameters for fluid 1. In the numerical calculations following Doi and
Koster [17], we have takenµ = 10,ζ = 1, κ = 0·1, η = 10·0, ρ = 1·0, λ = 2, α = 3·0 and
µ̄ = 0·1.

7.1. NONDEFORMABLE FREE SURFACE(Cr= 0)

When Cr= 0 the free surface is nondeformable. In this case the problem is independent of
Bo and the critical Marangoni number Ma2 and the corresponding wave numbera depend on
Q2, Ra2 and Bi. Similarly, the critical Rayleigh number and the corresponding wave number
depend onQ2, Ma2 and Bi.

The free surface is partially insulated (Bi <∞)
Numerically calculated values of Ma2c and the corresponding values ofac are given in Table 2
for pure Marangoni convection(Ra2 = 0) with d = 1 and d= 0 for a range of values ofQ2

when the free surface is perfectly insulated(Bi = 0).
The effect of the magnetic field for two layer system remain the same as for a single layer,

namely a monotonic increase in Ma2c andac viewed as a function ofQ2. The critical values
of Ra2c and the corresponding values ofac for pure Bénard convection(Ma2 = 0) with d = 1
andd = 0 for different values ofQ2 are given in Table 3. Here also the effect of the magnetic
field remains the same, namely a monotonic increase in Ra2c andac as a function ofQ2. It is
observed that for a givenQ2, Ma2c for d = 1 is always greater than that ford = 0 (Table 2)
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Table 2. Critical Ma2c and the correspondingac for pure
Marangoni convection when Cr= Bi = 0 for different values of
Q2 with d = 1 andd = 0.

d = 1 d = 0

Q2 ac Ma2c ac Ma2c

0 2·179 95·694 1·992 79·607

10−4 2·179 95·690 1·993 79·607

10−3 2·178 95·654 1·993 79·609

10−2 2·168 95·329 1·993 79·633

10−1 2·124 93·733 1·995 79·864

100 2·038 91·716 2·015 82·172

101 2·105 109·176 2·181 104·223

102 2·946 291·375 2·959 284·222

103 4·869 1651·54 4·745 1632·47

104 8·271 12875·72 8·092 12830·16

105 14·36 114326·75 14·19 114212·7
106 25·28 1075639·1 25·12 1075322·1
107 44·76 10411114·5 44·60 10410179·7
108 79·44 102268999·0 79·28 102266154·0

Table 3. Critical Ra2c and the correspondingac for pure Marangoni
convection when Cr= Bi = 0 for different values ofQ2 with d = 1
andd = 0.

d = 1 d = 0

Q2 ac Ra2c ac Ra2c

0 1·363 280·766 2·086 668·998

10−4 1·363 280·792 2·086 669·000

10−3 1·364 281·016 2·086 669·020

10−2 1·368 283·119 2·086 669·213

10−1 1·394 297·554 2·088 671·145

100 1·483 355·705 2·109 690·373

101 1·739 581·730 2·288 874·862

102 2·586 2039·27 3·128 2424·90

103 4·475 13723·76 4·991 14594·63

104 7·509 115981·9 7·949 118360·3
105 11·86 1067798·1 12·23 1074679·1
106 18·10 10249968·7 18·42 10270542·7
107 27·13 100484253·0 27·43 100547094·0
108 40·31 995347433·0 40·59 995541915·0
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(a) (b)

Figure 2. Critical conditions for the onset of stationary convection in the case Cr= 0 and Bi= 0 plotted as
functions of Ra∗2 for Q2 = 10−2, 103, 104 and 105 (a) Ma∗2 (b) ac. Continuous lines ford = 1 and broken lines
for d = 0.

(a) (b)

Figure 3. Critical conditions for the onset of stationary convection in the case Cr= 0,Q2 = 0 and Bi= 0 plotted
as functions of Ra∗2 for d = 0, 0·5 and 1 (a) Ma∗2 (b) ac.

whereas Ra2c for d = 1 is always less than that ford = 0 (Table 3). Thus, the effect of
the presence of the lower fluid layer increases the range of stability for the pure Marangoni
convection, whereas it is reduced for the pure Bénard convection with magnetic field. In both
cases results for the cased = 0 (single layer) are in excellent agreement with those given in
Table 1 of Wilson [12].

The values of Ma∗2 andac are plotted as a function of Ra∗2 for different values ofQ2 in
Figure 2, where Ra∗2 is defined as the ratio of Ra2 to the corresponding value of Ra2c for
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pure Bénard convection and Ma∗2 is defined as the ratio of Ma2 to the corresponding value of
Ma2c for pure Marangoni convection. From Figure 2(a) it is seen that ford = 0 the critical
Marangoni number decreases with an increase of the Rayleigh number, approximately linearly
for Q2 = 10−2 and nonlinearly forQ2 = 104. Thus, for largeQ2 the two destabilizing
agencies are tightly coupled and reinforce each other, confirming the results of Nield [8].
Further, as seen from Figure 2(a), the coupling is weakened asQ2 is increased, as found by
Wilson [12] in the single-layer case. However, when the magnetic forces are weak, the curve
for Q2 = 10−2, d = 1 shows that the presence of the lower layer weakens the coupling of
two destabilizing mechanisms. Figure 2(b) shows asQ2 increases, the variation ofac with
Ra∗2 is greater. The critical Ma∗2 for the onset of steady convection with Cr= Bi = Q2 = 0
for differentd is depicted in Figure 3 which confirms the weakening of the coupling with an
increase ind. The value ofac with d = 1 for Ra∗2 near zero (Marangoni convection) is always
greater than that withd = 0, whereas it is opposite for Ra∗2 near one (Bénard convection) as
seen from Figure 3(b) for nonmagnetic case,i.e.with Q2 = 0.

As the stability in the pure Marangoni convection is improved and, in the pure Bénard con-
vection reduced for nonzero values ofQ2, here we analyse asymptotically the stability for the
pure Marangoni convection for largeQ2. We observe from numerical results that the critical
Marangoni number is of orderQ2 for largeQ2 and also motivated by the results of Wilson
[12] for the single-layer problem we seek a solution in whicha = o(Q1/4

2 ). Substituting the
asymptotic values ofD1,D2,D3 andD4 for largeQ2 in (48) and solving for Ma2, we get

Ma(1)2 = Q2+ f (1)1 Q
3/4
2 + o(Q3/4

2 ), (49)

Ma(2)2 = f (2)0 Q2+ f (2)1 Q
3/4
2 + o(Q3/4

2 ), (50)

f
(1) or(2)
1 = 1

2λµs2

(
E42(E2± E3)

E2
41

− 2E4E3± E5

2E3E41

)
, f

(2)
0 =

ζ(1+ ζ )(η + η0µ̄)

2λµ̄(κ − η0ζ 2)
,

whereE1, E2, E3, E4 andE5 can be determined,+ and− correspond tof (1)1 and f (2)1 ,
respectively.

The value ofs in the wave numbera = sQ
1/4
2 + o(Q1/4

2 ) is determined numerically by
finding the root of df (1)1 /ds = 0. For Bi = 0, we gets = 0·79428 and the corresponding
value of the Marangoni number calculated fram (49) withQ2 = 108, d = 1 is Ma(1)2c =
102268709·0, and this is in good agreement with the corresponding numerical value given in
Table 2. In the limitd → 0 we recover the results of Wilson [12],

Ma(1)2 = Q2+
(

Bi

s
+ 2s

1− e−2s2

)
Q

3/4
2 + o(Q3/4

2 ). (51)

Figure 4 shows the numerically calculated values of Ma2c/Q2 andac/Q
1/4
2 plotted as function

of Q2 for different values of Bi and verifies the values in the asymptotic limit.

Free surface is conduction(Bi = ∞)

In this case results are independent of the presence of the lower fluid layer and exactly coin-
cidence with the results for a single layer given by Wilson [12]. In the limitQ2→∞Wilson
[12] showed.

Ma2

Bi
= 1

s

(
1− 2s√

(1+ 4s2)

)−1

Q
1/2
2 + o(Q1/2

2 ). (52)
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(a) (b)

Figure 4. Comparison of numerically calculated and asymptotic results for pure marangoni convection in the limit

Q2→∞ plotted as functions ofQ2 when Cr= 0 for Bi = 0, 1, 5 and 10 (a) Ma2c/Q2 (b) ac/Q
1/4
2 .

Table 4. Numerically calculated values of M2c, Ra2c and the corresponding
values ofac for pure Marangoni and B́enard convection, when Cr= 0 and
Bi = 0 in the caseQ2 = 100 for a range of values ofd whenλ = 2.

d ac Ma2c ac Ra2c

1·0 2·946 291·375 2·586 2039·268

0·9 2·946 291·351 2·595 2040·427

0·8 2·944 291·310 2·606 2042·335

0·7 2·943 291·239 2·624 2045·467

0·6 2·939 291·112 2·648 2050·592

0·5 2·936 290·886 2·683 2058·970

0·4 2·929 290·477 2·731 2072·685

0·3 2·923 289·732 2·793 2095·315

0·2 2·915 288·351 2·876 2133·312

0·1 2·914 285·727 2·982 2199·498

10−2 2·938 282·059 3·104 2333·485

10−3 2·956 283·798 3·125 2411·306

10−4 2·959 284·177 3·128 2423·502

10−5 2·959 284·218 3·128 2424·763
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Table 5. Numerically calculated values of M2c and the corresponding values ofac
for pure Marangoni convection when Cr= 0 and Bi= 0 in the caseQ2 = 100 for a
range of values ofλ whend = 1.

λ ac Ma2c λ ac Ma2c

1·0 2·822 282·474 0·3 2·720 274·956

0·9 2·808 281·469 0·2 2·705 273·788

0·8 2·794 280·441 0·1 2·689 271·595

0·7 2·780 279·391 10−2 2·675 271·501

0·6 2·765 278·318 10−3 2·673 271·390

0·5 2·750 277·221 10−4 2·673 271·379

0·4 2·735 276·101 10−5 2·673 271·378

Effect ofλ andd

For Cr = 0, Bo = 1, Bi = 0, Q2 = 100 numerically calculated values of Ma2c, Ra2c and
corresponding wave numbers whenλ = 2 for different values ofd are given in Table 4. The
results in Table 4 confirm that, in the limitd → 0, numerically calculated results approach
the results of Wilson [12]. In Table 5 numerically calculated values of Ma2c, ac when Cr= 0,
Bo = 1, Bi = 0, Q2 = 100, d = 1 for different λ are given and from which it can be
concluded thatλ has a stabilizing effect on the two-layer system.

7.2. LONG WAVELENGTH ASYMPTOTICS WITH DEFORMABLE FREE SURFACE(Cr 6= 0)

The long-wavelength asymptotics with deformable free surface are calculated with MATH-
EMATICA. The behaviour of the marginal stability curves when Cr6= 0 depends on Bi
and Bo, just as it does in the absence of the magnetic field. There are two different cases
of interest given by Bo= 0 and Bo 6= 0. In order to determine this, we seek the expan-
sion of Ma2 in the long-wavelength disturbance abouta = 0 in powers of a2 by writing
Ma2 = M−2a

−2+M0+M2a
2+O(a4) on the marginal stability curves. IfM−2 > 0 then the

system is stable for long-wavelength disturbances and ifM−2 < 0 then the system is unstable.
If M−2 = 0 andM0 > 0, then the marginal stability curves for long-wavelength disturbances
will have positive local maximum or minimum ata = 0 according asM2 < 0 orM2 > 0.
The global minimum is at nonzeroa for M2 < 0 and ata = 0 forM2 > 0. If M−2 = 0 and
M0 < 0, then the marginal curve for long wavelength disturbances will have negative local
maximum or minimum according toM2 > 0 orM2 < 0.

(i) Bo = 0.

When Bo = 0 the marginal stability curves are analysed for the onset of steady pure
Marangoni convection in the (a, Ma2) plane in the limita → 0. WhenQi 6= 0, Bo = 0
and all other parameters in the problem apart from Ma2 are fixed, the roots of (44)ξij , Aij
and exponential terms in the elements of the determinants are expanded in powers ofa2 up to
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O(a15). Using these expanded forms, we observe that the determinantsD1,D3,D4, appearing
in (48) are given by

D1 = D11a
14+O(a15),

D2 = D21a
10+O(a15),

D3 = D31a
10+O(a15),

D4 = D41a
10+O(a15),

(53)

where

D11 = (64Q2
1Q

5/2
2 /κ4ζ 4)(1+ Bi + d Biζ )

×(Q1/2
1 sq1(sq2 −Q1/2

2 cq2)+ dQ1cq1(Q
1/2
2 cq2− sq2)

+ µQ2sq2(dQ
1/2sq1 − 2cq1 + 2)),

D21 = Cr(64dBiQ2
1Q

7/2
2 /κ4ζ 3)sq2(dQ

1/2
1 sq1 − 2cq1 + 2),

D31 = Cr(64Q2
1Q

3
2/κ

4ζ 4)(Q
1/2
1 (cq2− 1)(sq1 − dQ1/2

1 cq1)

+ µQ1/2
2 sq2(2cq1 − 2− dQ1/2

1 sq1)),

D41 = Cr(32dQ1Q
2
2/3κ

4ζ 3)((1+ 2cq1)(−1+ cq2)d
2κQ1Q2

+ 12(−1+ cq2)Q1(2− 2cq1 + dQ1/2
1 sq1)

+3(1− cq2)κQ2(4− 4cq1 + 3dQ1/2
1 sq1)

+6Q1Q
1/2
2 (−2+ 2cq1 − dQ1/2

1 sq1)sq2),

cq1 = cosh(dQ1/2
1 ), cq2 = cosh(Q1/2

2 ), sq1 = sinh(dQ1/2
1 ) and sq2 = sinh(Q1/2

2 ).

The roots of (48) are given by

Ma(1)2 = −
(λµD21+D31)

λµD41

1

a2
+O(1), (54)

Ma(2)2 = −
(D11

(λµD21+D31)
a2 +O(a4). (55)

The sign of the coefficients of (54) and (55) depends onQ2 andd. The coefficient ofa−2

in (54) is positive forQ2 < 1 and negative forQ2 > 1. The marginal curve corresponding to
(54) gives nonzero minimum Marangoni number for nonzero wave number, but the marginal
curve corresponding to (55) gives zero minimum Marangoni number ata = 0 as the leading
order term of (55) is zero. The marginal stability curve attains a positive minimum value zero
ata = 0. Hence, when Bo= 0, the system is always unstable. In the limitd → 0 (55) reduces
to

Ma(2)2 =
(1+ Bi)

Cr
G1a

2+O(a4), (56)
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where

G1 = Q
1/2
2 cq2 − sq2

Q
1/2
2 (cq2− 1)

.

Equation (56) was first obtained by Wilson [11]. Since, there is no term independent ofa in
(56), when Bo= 0, the system is always unstable as the local (hence global) minimum zero
exists ata = 0 in this case.

(ii) Bo 6= 0 then

When Bo6= 0 then

Ma(1)2 = −
(λµD21+D31)

λµD41

1

a2
+O(1) (57)

Ma(2)2 = −
BoD11

(λµD21+D31)
+O(a2). (58)

The coefficient ofa−2 in (57) is positive forQ2 < 1 and negative forQ2 > 1. Similarly, the
leading-order term of (58) is negative whenQ2 < 1 and positive whenQ2 > 1. The marginal
curve corresponding to (57) gives the critical Marangoni number for nonzero wave number
for Q2 < 1 and it is checked numerically that the coefficient ofa2 of (58) is negative when
Q2 > 1 and therefore forQ2 > 1 the marginal curve corresponding to (58) gives a nonzero
critical Marangoni number for a nonzero wave number. In this case only long-wavelength
disturbances are stable with moderate or weak magnetic field beacuse the global minimum for
the marginal stability curve exists for nonzeroa. In the limit d → 0, (58) reduces to

Ma(2)2 = Bo(1+ Bi)

Cr
G1+

[
Bo

2 CrQ2
(2G1 +G2)+ Bo Bi

6 CrQ2
(6G1 +G3)

−(1+ Bi)

6 Cr2Q2
2

G1(Bo2G4+ 3 CrQ2G5)

]
a2+O(a4), (59)

where

G2 = Q
1/2
2 (Q

1/2
2 cq2 + sq2)

(cq2− 1)
,

G3 = Q
1/2
2 (Q

1/2
2 cq2 + 5+ sq2)

(cq2− 1)
,

G4 = 12(cq2 − 1)−Q1/2
2 (9sq2 − 2Q1/2

2 cq2−Q1/2
2 )

(cq2− 1)
,

G5 = BoQ2+ 2(4 Bo−Q2).

The coefficient ofa2 in (59) is negative when

Cr< Cr∗ = Bo2(1+ Bi)G1G4

Q2(3 Bo(2G1 +G2)+ Bo Bi(6G1+G3)− 3(1+ Bi)G1G5)
. (60)
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Table 6. Value of Cr∗ for differentQ2 when Bi= 1 and Bo= 1.

Q2 Cr∗ Q2 Cr∗ Q2 Cr∗

10−4 8·06× 10−3 100 7·86× 10−3 104 3·78× 10−5

10−3 8·06× 10−3 101 6·36× 10−3 105 3·93× 10−6

10−2 8·06× 10−3 102 2·22× 10−3 106 3·98× 10−7

10−1 8·04× 10−3 103 3·34× 10−4 107 3·99× 10−8

(a) (b)

Figure 5. Numerically calculated values of (a) Ma2c and (b)ac in the caseQ2 = 0, Bo= 1, Bi = 0 plotted as
functions of Ra2 for a range of values of Cr= 0·005, 0·01, 0·011 and 0·012.

(a) (b)

Figure 6. Numerically calculated values of (a) Ra2c and (b)ac in the case Ma2 = 25, Bo= 1, Bi = 0 plotted as
functions ofQ2 for a range of values of Cr.
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(a) (b)

Figure 7. Numerically calculated values of (a) Ma2c and (b)ac in the case Ra2 = 0, Bo= 1, Bi = 0 plotted as
functions ofQ2 for a range of values of Cr.

In the limitQ2→ 0 in (60), we recover the well-known result of Takashima [5] which is

Cr< Cr∗ = (1+ Bi)Bo2

8(1+ Bi)(15− 2 Bo)+ 40 Bo
. (61)

Evidently, asQ2 increases the critical Cr∗ reduces. This implies that for a fixed Cr< Cr∗,
a certain disturbance could be stabilized by choosing a suitable magnetic field. When the
magnetic field is large, even for very small value of Cr,i.e. for a small deformation of the free
surface, the system is unstable. Comparing the value of Cr∗ for different valuesQ2 given in
Table 6, and corresponding Cr∗ whenQ2 = 0, it is concluded that the magnetic field has no
stabilizing effect on the system when Cr6= 0 and Bo6= 0.

Critical Ma2c andac are plotted as function of Ra2 withQ2 = 0, Bo= 1,d = 1 and Bi= 0
for different values of Cr in Figure 5 and it shows the variation in the values of Ma2c andac
as Cr increases compared to the case withd = 0. Figure 5(a) depicts a jump discontinuity in
Ma2c and it goes to zero for Ra2 around 280. Another interesting feature is that for a double-
layer systemac is not zero for any Ra2, unlike a single layer system for Cr lying in (0·005,
0·01) as seen in Figure 5(b). In Figure 6 typical values of Ra2c andac are plotted as a function
ofQ2 for the case with Bo= 1, Ma2 = 25,d = 1 and Bi= 0 and it shows that they only differ
significantly from those when Cr= 0 for unrealistically large values of Cr. The variation of
Ma2c andac with Ra2 = 0, Bo= 1, d = 1 and Bi= 0 when the free surface is deformable
are given in Figure 7 and it is concluded that the lower layer has no stabilizing effect on the
system for deformable free surface, whereas it stabilizes the system for a non-deformable free
surface.

8. Conclusions

In this paper a combination of analytical and numerical techniques have been used to analyse
the effect of a second layer and a magnetic field on the onset of steady Bénard-Marangoni
convection in a two-layer system of conducting fluids subjected to a uniform vertical tem-
perature gradient. It is found that the parameters Cr, Bo andλ play an important role on the
onset of steady convection. In the presence of a second layer it is observed that the critical
parameters for the onset of pure Marangoni convection are increased, whereas for the onset
of pure bouyancy convection they are decreased. Further, we have discussed in detail the
behaviour of the critical parameters Ra2c, Ma2c andac in different limiting casesQ2→ 0 and
d → 0.
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