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Abstract. The onset of steady Bénard-Marangoni convection in two horizontal liquid layers of electrically con-
ducting immiscible fluids subjected to a uniform vertical magnetic field and temperature gradient is analysed by
means of a combination of analytical and numerical techniques. The free surface can be either deformable or
nondeformable and the interface between the fluids is always assumed to be flat. The effect of the lower layer on
the critical values of Rayleigh, Marangoni and wave numbers for the onset of steady convection is investigated.
When the free surface is nondeformable, the critical parameters for the onset of pure Marangoni convection are
increased, whereas for the onset of pure Bénard convection they are decreased compared to the single-layer model.
The results for a single-layer and for two-layers are qualitatively similar for Bénard-Marangoni convection when
the free surface is deformable. All disturbances can be stabilized with sufficiently strong magnetic field when the
free surface is nondeformable. If the free surface is allowed to deform and gravity waves are excluded, then the
layers are always unstable to disturbances with sufficiently small wave number with magnetic field. Inclusion of
gravity waves has a stabilizing effect on certain disturbances of small wave number in the presence of weak or
moderate magnetic field.
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1. Introduction

Buoyancy-driven instability has been well established since the pioneering work of Rayleigh
[1], who showed that convection, called Bénard convection, occurs only when the Rayleigh
number exceeds a critical value. On the other hand, Pearson [2] showed that surface-tension-
gradient effects can also cause convection, usually called Marangoni convection, when the
Marangoni number exceeds a critical value.

The combined problem, including both buoyancy and surface-tension effects, was treated
by Nield [3] in the the limit of large surface tension who found that for steady convection the
two destabilizing agencies reinforce one another and are tightly coupled. Davis and Homsy [4]
studied the effect of weak free-surface deformation on critical Rayleigh and Marangoni num-
bers for the onset of steady convection. They concluded that the presence of a deformable free
surface can lead to a stabilization of Bénard convection and the destabilization of Marangoni
convection relative to the case of a planar free surface. Takashima [5, 6] investigated the
effect of stronger free-surface deformation on the onset of steady and oscillatory Marangoni
convection, respectively.

The effect of a uniform vertical magnetic field on pure Bénard convection was described
by Chandrasekhar [7] who demonstrated that the presence of the magnetic field increases the
critical value of Rayleigh number for the onset of both steady and overstable convection, and
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so has a stabilizing effect on the layer. Nield [8] analyzed the effect of a magnetic field on both
Bénard and Marangoni convection by extending his previous work [3] to include a vertical
magnetic field. He found that the effect of increasing the strength of the magnetic field was
to monotonically increase the critical values of Rayleigh and Marangoni numbers and hence
stabilize the layer. Sarma [9] investigated the effect of magnetic field on the onset of steady
Marangoni convection with deformable free surface and Bénard-Marangoni convection for
a variety of thermal and magnetic boundary conditions was considered in [10]. Wilson [11]
pointed out the incorrectness of the boundary condition at the deformable free surface used
by Sarma [9, 10]. Wilson [12] investigated the effect of magnetic field on the onset of steady
Bénard-Marangoni convection in a horizontal layer of fluid, when the free surface is deform-
able with conducting lower rigid boundary condition and concluded that the presence of a
magnetic field always has a stabilizing effect on the layer. Treating the Marangoni number as
the critical parameter, he showed that, if the free surface is nondeformable, then any particular
disturbance can be stabilized with a sufficiently strong magnetic field, but, if the free surface
is deformed and gravity waves are excluded, then the layer is always unstable to small wave
number disturbances with or without the magnetic field. Including gravity has a stabilizing
effect on the long wave-length modes, but not all disturbances can be stabilized, no matter
how strong the magnetic field is. Thess and Nitschke [13] investigated the spatial structure of
the marginal mode for steady Marangoni convection in the limit of strong magnetic field.

The onset of Marangoni convection including gravity waves (but not buoyancy), in two
initially motionless viscous immiscible fluids confined between horizontal isothermal solid
surfaces, has been investigated by Smith [14] who found instability for heating vertically
above and below. Zeren and Reynolds [15] included buoyancy forces in the analysis of Smith
[14] and concluded that stability depends strongly on the ratios of the properties of the fluids,
the total depth of the layer and the depth fraction of each fluid. Furthermore, the addition of
the stable density gradient increases the critical Marangoni number for moderate and large
wave-number disturbances. In all the studies referred to above, a temperature gradient applied
perpendicular to the free surface induces the convective motion. On the other hand, Crespo
and del Arceet al.[16] and Doi and Koster [17] have studied thermocapillary convection due
to temperature gradient applied parallel to the interfaces, in two immiscible liquid layers in a
rectangular cavity with flat interfaces. They obtained an analytical solution, assuming infinite
horizontal layers in order to understand the basic physics of the liquid encapsulation. Recently
Biswal and Rao [18] have extended these ideas to deformable interfaces. For the infinite layers
considered here, the deformation of the free surface corresponds to nonzero small Crispation
number. They concluded that the assumption of flat interface and free surface is good for
certain fluids (see also Doi and Koster [17]). Therefore, the assumption of flat interface is
reasonable for the case of large interface surface tension, even when the free surface is slightly
deformable.

In the present paper a linear stability analysis is carried out for two initially motionless,
viscous, immiscible and infinite fluid layers bounded by a horizontal isothermal solid surface
below and a free surface above. We mainly assume that both the interface and free surface
are flat, but also give some results for the case of a slightly deformable free surface. Here we
consider the onset of steady Bénard-Marangoni convection for a system heated from below.
Under the application of a uniform vertical magnetic field the influence of Rayleigh humber
and Chandrasekhar number on the critical Marangoni number is examined. The primary in-
terest is to know how marginal stability characteristics are modified by including Marangoni
and Rayleigh numbers simultaneously in the presence of a magnetic field for a two-layer
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Figure 1. Geometry of the unperturbed state. Thaxis is normal in to the page.

system. The two-layer system introduces a large number of dimensionless parameters, but
only a selected and exemplifying set of results are displayed.

2. Mathematical formulation

Consider two unbounded horizontal layers of quiescent fluid, one lying above the other as
shown in Figure 1, subject to a uniform vertical magnetic field of stredfjtim which the
lower rigid surface is maintained at constant temperafrand the free surface, which is
bounded with a passive electrically nonconducting gas of negligible density, is maintained
at constant temperatug. A Cartesian coordinate system is chosen witty-axes in the
plane of the interface angtaxis vertically upwards. Fluid 1 is bounded below by —d;
and the free surface of fluid 2 which is above the fluid 1, ig at d. It is assumed that
the interface surface tension is large enough to make the fluid-fluid interfages-ad, flat
when motion occurs, whereas the free surface is deformed and givee:-hi + f(x, y, t).
Let o;, ki, i, &y vi, i, 0; andn; = 1/4ni;6; be the densities, the thermal diffusivities,
the dynamic viscosities, the thermal conductivities, the kinematic viscosities, the magnetic
permeabilities, the finite electrical conductivities and the nonzero electrical resistivities of the
fluids respectively. In what follows subscriptakes values 1 and 2 identifying the variables of
the lower and the upper layers, respectively. In order to avoid Rayleigh-Taylor instability, we
assumep; > po. In the initial state, the temperatures, and hence the densities, vary linearly
in the z direction and the surface tensions at the free surface and the interface are uniform.
The surface tensions may vary along the free surface and the interface, but all other properties
are assumed to be uniform in each medium. The surface tensions at the interface and the free
surface are given by the linear equations

ol =o0! —ol(T —6y) atz=0, (1)

of =of —af(T —6) atz=dy+ f(x,y,1), )

respectively, wheré@y is the interface temperature in the conductive state, the positive con-
stantso; ando; are the surface-tension temperature coefficients ahdand o/ are the
surface tensions at the appropriate reference temperatures. In (1) and (2) and in what follows
superscriptd andF indicate the corresponding quantities at the interface and the free surface,
respectively.
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3. General flow equations and boundary conditions

The complete equations of motion for incompressible, electrically conducting fluids in the
presence of a magnetic field subject to the Boussinesq approximation are

aU; ; 1 L

L w,n ==Ll - v, 4+ 0, VPU, + B (H V), @3)
ot Pci Pci T Pei

dH; )

— + WiV H; = (H:.V)U; + 0V H;, (4)
oT;

< TUVT = 1, V2T, (5)

V.U; =0, (6)

V.H; =0, (7)

whereU; are the fluid velocitiesH; are the magnetic fieldd; are the temperatureg, =
(0,0, g) is the external gravity field anH; are the magnetic pressures, which are defined to
bell; = P, + 11;|H;|?/8m, where P, are the fluid pressures. The derivation of (3) to (7) is
given in Chandrasekhar [7, pp. 160-161]. The densities of the fluids are given by

pi = pei(1—a;(T; — 6;)), (8)

whereq; are the constant coefficients of volume expansion andothe@re values of the
constant densities at the reference temperatijres

The external magnetic field in the region below the fluid 1 is giveHy= V¢, where
V2¢; = 0 andg; = 0 atz = —oo. Similarly, for the region above the free surfal§ = V¢,
whereV?¢, = 0 and ¢ = 0 atz = co. These boundary conditions apply to nonconducting
exteriors, see Chandrasekhar [7, pp. 162—-163].

The boundary conditions for the problem are given by

U,=0T1=6,H,=(0,0 H)+ V¢ 9)

at the lower boundary = —ds,

Upn' =Usn' =0,(Uy—Up).t] =0, Uy —Uy).t, =0, (10)
G1Tin = GoTon, Th = T, (11)
(S§ = Snint = 0,87 = Smftl, = o)y, (5§ = SPmit]; = o, (12)
H,=H, (13)

at the interface = 0 and

U2.nF _ af(x,y,t) S(Z) FF

F o2 F.F f
9t jk ny Xj - Utxl” Sjk ny t}/ = 0F (14)

t
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SPnfnt = oK, ¢Tonr + (T2 — 6,) =0, (15)

H,=(0,0,H)+ V¢» (16)

at the free surface=d, + f(x, y, ).

In (15) the symboly, 6, andK are the heat-transfer coefficient between the free surface
and the gas lying above, the ambient temperature of the above lying gas and the free surface
curvature, respectively. The components of the stress teﬂgﬁ)nsf the fluids, in the usual
tensor notation, are defined by

SO = — P8+ 2me, 269 = @) +ul), (17)
whereé ;. is Kronecker delta. Here, we have used supersgiipti = 1, 2 indicating the
fluid 1 and 2. The subscripts’, t], t}, n”, tI” andt! represent the normal and the tangential
derivatives at the interface and the free surface. Derivation of the above boundary conditions is
given in Smith [14] and Chandrasekhar [7, pp. 162—-163]. Equation (10) and the first condition
of (14) are the kinematic boundary conditions at the interface and the free surface, respectively.
Note that, since the fluids have nonzero electrical resistiyity: 0, all the components of the
magnetic field are continuous across the interface and the free surface and, consequently, there
are no net magnetic stresses at the interface and the free surface. The balance of stress at the
interface and the free surface in the direction are given by the first conditions of (12) and (15),
respectively. The first condition of (12) implies that tAeare continuous across the interface.

The jump in the normal stress across the free surface is balanced by the surface tension times
the curvature as seen from the first condition of (15). Similarly, the tangential stress balance
at both the interface and the free surface inittendy directions are given by the second and

the third conditions of (12) and (14), respectively.

4. Basic state solutions

In the basic state the heat flow is due only to conduction and the fluids are at rest. In this
caseU; = 0, the magnetic field is uniforml = (0, 0, H), ¢; = 0, the free surface is flat,
f(x,y,t) = 0 and there is a uniform adverse temperature gragieatross each layer, so

T, = 6o + B;iz, where

O — 0181d2 + U202dh By = (01— 62)02 L — (0 —62)01
= 1=——, =——"—.
§1dr + Lada S1dz + $adh S1dy + Cady

Pressure$; and P,, andé, are given by

d
Py = Py + gpcods <1 + a2ﬂ22 2) — 8Pc12 (1 + alT'Bl(Z + 2d1)> , (18)
azf
Py = Py+ gpeo(do —2) | 1+ T(dz -2, (19)
%:%+%ﬁ, (20)
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Table 1. Definitions of nondimensional parameters and ratios.

Ra = —ga; Bidy/vik; Rayleigh numbers

Ma; = —U%ﬁldg/ulxl Marangoni number at the interface
Map = —afﬂzdzz/uzxz Marangoni number at the free surface
Pr = v; /k; Prandtl numbers

Pm = n;/k; Magnetic Prandtl numbers

Cr= upko/of do Crispation number

0; = ;1,~H2d22/4nu,» n; Chandrasekhar numbers

Bi = ydo/t2 Biot number

Bo = pepgd3/ol Bond number

0 = pe2/Pcl density ratio

W= ua/u1 viscosity ratio

¢ =¢2/01(=1/B8 = B1/B2) | thermal conductivity ratio

K = Kko/K1 thermal diffusivity ratio

n=mn2/n1 electrical resistivity ratio

= o/ magnetic permeability ratio
d=d1/do depth fraction

o =oa/aq volume expansion ratio
r=ol/ok surface tension gradient ratio

where P, is the constant atmospheric pressure.

5. Linearized normal mode analysis

We introduce nondimensional variables, takitg «o/dz, H, —Pa, peaks/ds andd3/ic; as
the appropriate scales for the unit of length, velocity, magnetic field, temperature gradient,
pressure and time, into the governing equations and the boundary conditions. We obtain the
17 nondimensional groups given in Table 1. Note that some of the nondimensional para-
meters for the fluid 1 and 2 are related throug@ly = (Qoun)/it, May = Auk May,
Ra = (vk¢ Ra)/a, P = (k PR) /v and Pm = (« Pmp) /i for given nondimensional ratios.

The linear stability of the basic state is analyzed in the usual way by seeking a solution for
any physical quantityp (x, y, z, ) in normal mode form

D(x,y,2,1) = Bo(z) + d(z) gPHatian (21)

where®y is the value of® in the basic state. In general, the temporal expopeatcomplex;
a, anda, are the wave numbers in theandy directions, respectively. We have takeén v,
andw; for the components of the perturbed velocities éy}dﬁ,»y and#;, for the components
of the perturbed magnetic fields in the convective motion.

Substituting these forms in the governing equations and the boundary conditions, we ob-
tain linearized equations, neglecting the products and the squares of the perturbations. After
eliminating iz; (z), v; (z), ﬁ,»x(z) andﬁ,»y(z) from the linearized forms of (3) to (5), using the
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linearized forms of (6) and (7), we have the following equations from which to determine the
stability of the two-layer system.

Pmy - Rafa? .
(D? — a? |:(D2—a2—2> g + Qs mthlz]— apa Ty =0, (22)
Pry K K
(D? — ¢? [(DZ —a® - %) Wy + 0o szm’zzZ] — Raa®T, =0, (23)
2
(Pmy(D? — a?) — Kp)ﬁlZ +kDwy =0, (24)
(Pmy(D? — a?) — p)ha. + Db, = 0. (25)
(D? —a? — kp)Th + kg = 0, (26)
(D* = a® — p)T, + 1, =0, (27)

wherea = (a2 + a2)'/?, the total wave number in ther, y) plane andD = d/dz, differen-

tiation with respect ta. Combining the first two linearized equations derived from (3), using
the continuity equations for the velocities and the magnetic fields, we obtain an expression for
the fluid pressure

P (Pro(D? — a?) — p) Dby + Q2 Pr, Pmy(D? — a®)hy.

2 (28)

a?

The expressions for external magnetic fiefgdswhich satisfy(D2—a?)¢; = 0, andg; = 0
atz = o0, are given by

$1(z) = B, &+, ¢y = By &1, (29)

whereB; are arbitrary complex constants.
The corresponding boundary conditions are

Dy =1y, =T, =0, (30)

(D — a)hy, =0, (31)
atz = —d,

Wy = W =0, Dy = Dby, Ty = T, DTy = ¢ DT>, (32)

K (D? + a®)ihy — i (D? + a®)iby 4+ a®> May T1 = 0, (33)

hi, = hy,, Dhy, = Dho. (34)
atz =0and

o = pf, (35)
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(D? + a®)ibp 4 a® May(Tp — f) =0, (36)

—Cr(Pr(D? — 3d? — Q,) — p) Dy — Cr Q, Ppha, + Pha?(a? + Bo) f = 0, (37)

(D + a)hy, =0 (39)

atz = 1. Equation (37) is deduced from (15) by use of the valuBxaind (25). We obtain the
convection problem for a single layer as studied by Wilson [12] for finite Bi from our analysis
by takingz = 0 andd = 0.

6. Solution of the linearized equations

The complete solution of the linear stability problem is determined, once we have solved
(22) to (27) subject to the boundary conditions given in (30) to (39). The paramésethe
eigenvalue associated with a particular disturbanc®e(fp) > 0, the associated disturbance
grows and the initial state is linearly unstable to that disturban®&(ip) < 0, the disturbance
decays and the initial state is linearly stable. Disturbances R#itp) = 0 are marginally
stable. In the marginally stable stdten(p) need not be zero and so oscillatory disturbances
may exist. Exchange of stabilities has been proved to be valid for Bénard convection subject to
a variety of boundary conditions by Pellew and Southwell [20] and for Marangoni convection
in one fluid by Vidal and Acrivos [21]. Many of the investigations are concerned with the
steady convection, but the first to investigate the possibility of an instability setting in an oscil-
latory convection was Takashima [6]. Later Wilson [11, 22] extended Takashima’s [6] analysis
by applying magnetic field and found overstability when the free surface is deformable and
layer is cooled from below (negative Marangoni number). However, Sternling and Scriven
[23] found both the stationary and the oscillatory marginal states for a two-fluid concentra-
tion dependent Marangoni convection model. Chandrasekhar [7], Kaddame and Lebon [24]
have shown that exchange of stabilities does not hold for pure Bénard and pure Marangoni
problems respectively. We have assumed that the principle of exchange of stabilities is valid
for the present problem. For the sake of simplicity we consider only the bagg) = 0.

If Jm(p) = 0 assumed and instability is found, the apparent critical Marangoni humber for
steady convection must be an upper bound on the true critical Marangoni number. In the
present work we shall assume the exchange of stabilities and go se0 at the onset of
convection. Eliminating:;, from the coupled equations, we obtain forand7; as

K ((D? — a®)? — Q1D?)y = Ray fa’Th, (40)
((D? — a®)? — QDb = Rapa®T. (41)

Equations (26) and (27) reduce to

(D? — a® Ty + k¢, = 0, (42)
(D% — a1y + wy = 0. (43)
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The linearized problem for the onset of steady Bénard-Marangoni convection is solved by
seeking solutions of the form

Wi (2) = AC €%, Ti(2) = G €7,

where exponents;, coefficientsA; andC; are to be determined. Substituting these forms in
(40)—(43) and eliminatingi; andC;, we have

(51'2 _ 612)((5[2 —a?)? - Qifiz) +Raa? =0, (44)

which gives six distinct roots;; with j = 1 to 6. Denoting the values of; andC; corres-
ponding to;; by A;; andC;;, from (42) and (43), we get

a=-La - m=-wg-a) (45)

The general solution to the linear stability problem is therefore

6 6
w;(z) = ZAUCU s, Ti(z) = Z C;; it (46)
=1 =1

From the boundary conditions (35) and (37) wjth= 0, we get the free-surface deflection
evaluated at = 1 as

(D? — 3a? — Q) D,

‘= Cr
! a?(a? + Bo)

(47)

Omitting the magnetic field boundary conditions given in (31), (34) and (39), we are left with
twelve boundary conditions given in (30), (32), (33), (35), (36) and (38) to determine the
twelve unknownsC;;,i = 1, 2, j = 1to 6 (up to an arbitrary multiplier). Substitution of
above expressions faf; (z) and7;(z), given in (46), in the twelve boundary conditions gives
rise to a 12x 12 complex determinant of coefficients of unknow@g, which after some
simplification can be written in the form

kD1 + a’BMay D, + ka® Map,D3 + a8 Ma, Ma; Dy = 0. (48)

The dispersion relation for marginal stability (48) depends on all the nondimensional para-
meters except PrPm and is quadratic in Marangoni number, M& Ma,. The four 12x 12
complex determinant®,, r = 1, 2, 3, 4 depend on all the other parameters of the problem
except Ma and Ma. The elements of determinanfs = |d/ | can be obtained in a straight
forward way and they are not given here as that adds to the length of the paper.

Here it is observed thdb, and D, are independent of Cr and Bo whenBi0 and,Ds; and
D, are independent of Bi. When Bt 0 and the Marangoni numbers are zero, (48) reduces to
D, = 0, which implies the onset of steady Bénard convection is independent of surface tension
of the free surface when fluid-fluid interface is flat, and is analogous to the single layer case.
Wilson [19] has pointed out that in agreement with the present results the qualifier ‘when
Nu = 0’ should be added to the line ‘one immediate consequence of this is that the onset
of steady Bénard convectio@ = 0) is independent of Cr and Bo’ in [12]. The complete
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solution of the linear stability problem is given by (44) and (48). Equation (44) is solved for
&;; using Numerical Algorithms Group (NAG) routine CO2AGF. In order to prevent numerical
difficulties arising from the exponential terms present in the determirnantsve multiplied
each columm: whenm < 6 by an exponential factor with exponent min(0,e(%d&,,,)) and
whenm > 7 by min(0,—MNe(&2,)) wheredie(.) denotes the real part of a complex quantity.
The complex valued determinant,, D,, D3z and D, are evaluated numerically by using
NAG routine FO3ADF. Equation (48) is solved for Marangoni number by use of NAG routine
CO2AFF.

7. Discussion of results

The marginal curves in th@, Ma,) plane are obtained by (48) where pa a function of the
parametera, Rg, Cr, O,, Bo, Bi,d, A, p, u, ¢, a, n, i andk. There are two values for Ma

one of them being always positive and the other is either positive or negative giving rise to
two marginal curves. The curve with negative values of the Marangoni number corresponds
to a system heated from above and therefore is not possible for a system heated from below.
When both values of Maare positive, both marginal curves possess global minima. For a
given set of parameters the critical Marangoni number for the onset of steady convection
is defined as the minimum of the global minima of both marginal curves. We denote this
critical value by Ma. and the corresponding critical wave numberdy All disturbances

with Ma, < Ma,,. are stable and there exist unstable disturbances for Mdvia,.. The

Bénard convection (48) becomes a transcendental equation iwvtiRa the other parameters

are prescribed. Similarly, the critical Rayleigh numbenRar a given set of parameters

is defined as the minimum of global minima of each marginal curve iNdh&«) plane.

Here also, the region above the marginal stability curves represent unstable modes and the
region below the curves represents stable modes. We present here the critical Rayleigh number
Ra., the critical Marangoni number Mafor fluid 2 only as one can trivially calculate the
corresponding critical parameters for fluid 1. In the numerical calculations following Doi and
Koster [17], we have taken = 10, = 1,« = 0.1, = 100,p = 1.0,A = 2, = 3.0 and
=01

7.1. NONDEFORMABLE FREE SURFACHCr = 0)

When Cr= 0 the free surface is hondeformable. In this case the problem is independent of
Bo and the critical Marangoni number Mand the corresponding wave numhedepend on

02, Ra and Bi. Similarly, the critical Rayleigh number and the corresponding wave number
depend ornQ,, Ma, and Bi.

The free surface is partially insulate®i( < oco)
Numerically calculated values of Maand the corresponding values®fare given in Table 2
for pure Marangoni convectiofRe, = 0) with 4 = 1 and d= 0 for a range of values af,
when the free surface is perfectly insulat@&l = 0).

The effect of the magnetic field for two layer system remain the same as for a single layer,
namely a monotonic increase in Manda. viewed as a function of,. The critical values
of Ra,. and the corresponding values®ffor pure Bénard convectiofiMa, = 0) withd = 1
andd = 0 for different values ofD, are given in Table 3. Here also the effect of the magnetic
field remains the same, namely a monotonic increase jn&ula. as a function ofQ,. It is
observed that for a give@,, May. for d = 1 is always greater than that far= 0 (Table 2)
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Table 2. Critical Map. and the corresponding:. for pure
Marangoni convection when Ct Bi = 0 for different values of
Qo withd = 1 andd = 0.

d=1 d=0
02 dc May, dc May,
0 2179 95694 1992 79607
1074 2179 95690 1993 79607
1073 2178 95654 1993 79609
1002 2.168 95329 1993 79633
1071 2124 93733 1995 79864
1P 2.038 91716 2015 82172
10t 2.105 109176 2181 104223
102 2.946 291375 2959 284222
103 4.869 165154 4745 163247
104 8271 1287572 8092 1283016
10° 1436 11432675 1419 1142127
16 2528 10756341 2512 10753221
10 4476 104111146 4460 104101797
18 7944 102268999 7928 102266150

Table 3. Critical Ra, and the corresponding. for pure Marangoni
convection when Ce Bi = 0O for different values 00, withd = 1

andd = 0.
Q2 dc RaZc dc RaZc
0 1.363 280766 2086 668993
1004 1.363 280792 2086 669000
1073 1.364 281016 2086 669020
1002 1.368 283119 2086 669213
1001 1.394 297554 2088 671145
1P 1.483 355705 2109 690373
10t 1.739 581730 2288 874862
10% 2.586 203927 3128 242490
103 4.475 1372376 4991 1459463
104 7.509 1159819 7.949 118363
10° 1186 10677981 1223 1074679
16 1810 102499687 1842 102705427
107 2713 100484253 2743 100547090
18 4031 995347433 4059 995541918
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(b)

Figure 2. Critical conditions for the onset of stationary convection in the case-Q¥ and Bi = 0 plotted as
functions of R§ for 0, = 1072, 103, 10* and 16 (a) Ma (b) a.. Continuous lines forl = 1 and broken lines
ford = 0.

10 2.2
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0.5
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1.4
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Ra’ Ra%
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Figure 3. Critical conditions for the onset of stationary convection in the case GrQ» = 0 and Bi= 0 plotted
as functions of Raifor d = 0, 05 and 1 (a) M3 (b) a.

whereas Ra for d = 1 is always less than that fat = 0 (Table 3). Thus, the effect of
the presence of the lower fluid layer increases the range of stability for the pure Marangoni
convection, whereas it is reduced for the pure Bénard convection with magnetic field. In both
cases results for the cage= 0 (single layer) are in excellent agreement with those given in
Table 1 of Wilson [12].

The values of Mg anda. are plotted as a function of Rdor different values ofQ; in
Figure 2, where Rais defined as the ratio of Rdo the corresponding value of Réafor
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pure Bénard convection and ¥l defined as the ratio of Mdo the corresponding value of
May. for pure Marangoni convection. From Figure 2(a) it is seen that/fer 0 the critical
Marangoni number decreases with an increase of the Rayleigh number, approximately linearly
for Q> = 1072 and nonlinearly forQ, = 10*. Thus, for largeQ, the two destabilizing
agencies are tightly coupled and reinforce each other, confirming the results of Nield [8].
Further, as seen from Figure 2(a), the coupling is weakend@has increased, as found by
Wilson [12] in the single-layer case. However, when the magnetic forces are weak, the curve
for 0, = 1072, d = 1 shows that the presence of the lower layer weakens the coupling of
two destabilizing mechanisms. Figure 2(b) showgasincreases, the variation af with
Ra; is greater. The critical Mafor the onset of steady convection with €rBi = Q, = 0
for differentd is depicted in Figure 3 which confirms the weakening of the coupling with an
increase ind. The value otz with 4 = 1 for R& near zero (Marangoni convection) is always
greater than that with = 0, whereas it is opposite for Raear one (Bénard convection) as
seen from Figure 3(b) for nonmagnetic case,with 0, =0

As the stability in the pure Marangoni convection is improved and, in the pure Bénard con-
vection reduced for nonzero values@®@$, here we analyse asymptotically the stability for the
pure Marangoni convection for large,. We observe from numerical results that the critical
Marangoni humber is of orde®, for large O, and also motivated by the results of Wilson
[12] for the single-layer problem we seek a solution in whick: o(Q3'*). Substituting the
asymptotic values ob1, D,, D3 and D, for large Q, in (48) and solving for Mg we get

Mal” = 0, + £203* + 0(0Y%, (49)
May? = (Z)Q + 207" + 003, (50)
Mor@ _ 1 (E4z(E2 + E3)  2E4Es+ Es) @ _ ¢+ ¢)(n + nop)

! 2 pus? EZ 2E3sEq )’ ° 21k = not?)

where Ey, E,, Es, E4 and Es can be determineds and — correspond tof," and £,?,
respectively.

The value ofs in the wave number = sQ3* + o(Q3") is determined numerically by
finding the root of ¢,”/ds = 0. For Bi = 0, we gets = 0.79428 and the corresponding
value of the Marangoni number calculated fram (49) with = 1%, d = 1 is Ma> =
1022687090, and this is in good agreement with the corresponding numerical value given in
Table 2. In the limitd — 0 we recover the results of Wilson [12],

B
Ma" Q2+(S'+1_L6252> S+ 00y, (51)

1/4

Figure 4 shows the numerically calculated values ofM@-» andac/Ql/4 plotted as function

of Q5 for different values of Bi and verifies the values in the asymptotic limit.
Free surface is conductiofBi = c0)

In this case results are independent of the presence of the lower fluid layer and exactly coin-
cidence with the results for a single layer given by Wilson [12]. In the lighit— oo Wilson
[12] showed.

Ma, 1 2s 1/2 1/2
— =—-1- — . 52
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2.14320

1.58234

1 1.02125.
0.79428

Qz GZ
@ (b)

Figure 4. Comparison of numerically calculated and asymptotic results for pure marangoni convection in the limit
02 — oo plotted as functions o, when Cr= 0 for Bi = 0, 1, 5 and 10 (a) Mg/ Q2 (b) ac/ 05’ *.

Table 4. Numerically calculated values of }, Ra,. and the corresponding
values ofa. for pure Marangoni and &ard convection, when C& 0 and
Bi = 0 in the cas&?» = 100 for a range of values @fwheni = 2.

d ac May,. ac Rap,

1.0 2.946 291375 2586 2039268
09 2.946 291351 2595 2040427
08 2944 291310 2606 2042335
07 2943 291239 2624 2045467
06 2939 291112 2648 2050592
05 2936 290886 2683 2058970
04 2.929 290477 2731 2072685
03 2923 289732 2793 2095315
02 2915 288351 2876 2133312
01 2914 285727 2982 2199498
102 2.938 282059 3104 2333485
1073 2.956 283798 3125 2411306
104 2.959 284177 3128 2423502
107° 2.959 284218 3128 2424763

196762.tex; 6/05/1999; 13:06; p.14



The onset of steadyéBard-Marangoni convection in a two-layer systeB99

Table 5. Numerically calculated values of 4 and the corresponding values @f
for pure Marangoni convection when €r0 and Bi= 0 in the casg)> = 100 for a
range of values of whend = 1.

A ac May, A ac Mag,

1.0 2.822 282474 03 2720 274956
09 2:808 281469 02 2705 273788
08 2794 280441 01 2689 271595
07 2.780 279391 102 2.675 271501
06 2765 278318 103 2.673 271390
05 2.750 277221 104 2.673 271379
04 2735 276101 10°° 2.673 271378

Effect ofA andd

For Cr= 0, Bo = 1, Bi = 0, 0, = 100 numerically calculated values of MaRg&,. and
corresponding wave numbers when= 2 for different values of/ are given in Table 4. The
results in Table 4 confirm that, in the limit — 0, numerically calculated results approach
the results of Wilson [12]. In Table 5 numerically calculated values of.Ma when Cr= 0,

Bo = 1, Bi = 0, 0, = 100,d = 1 for differentx are given and from which it can be
concluded that has a stabilizing effect on the two-layer system.

7.2. LONG WAVELENGTH ASYMPTOTICS WITH DEFORMABLE FREE SURFACECT # 0)

The long-wavelength asymptotics with deformable free surface are calculated with MATH-
EMATICA. The behaviour of the marginal stability curves when €r 0 depends on Bi

and Bo, just as it does in the absence of the magnetic field. There are two different cases
of interest given by Bo= 0 and Bo# 0. In order to determine this, we seek the expan-
sion of Mg in the long-wavelength disturbance abeut= 0 in powers of 4 by writing

May, = M_,a=? + My + M»a? + O(a*) on the marginal stability curves. M_, > 0 then the
system is stable for long-wavelength disturbances aml if < O then the system is unstable.

If M_, = 0andMy > 0, then the marginal stability curves for long-wavelength disturbances
will have positive local maximum or minimum at= 0 according as/, < 0 or M, > 0.

The global minimum is at nonzewfor M, < 0 and ata = 0 for M, > 0. If M_, = 0 and

My < 0, then the marginal curve for long wavelength disturbances will have negative local
maximum or minimum according t&, > 0 or M, < O.

(i) Bo = 0.

When Bo = 0 the marginal stability curves are analysed for the onset of steady pure
Marangoni convection in thez( May) plane in the limita — 0. WhenQ; # 0, Bo= 0
and all other parameters in the problem apart from i@ fixed, the roots of (44, A;;
and exponential terms in the elements of the determinants are expanded in parfeup tb
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0 (a'®). Using these expanded forms, we observe that the determibani3s, D4, appearing
in (48) are given by

Dy = Dpia**+ 0(a'®),

Dy = Dna'®+ 0(a'®),

D3 = D31a'®+ 0(a®®),

Dy = Dyya®® + 0(a®),

(53)

where
Dy = (64Q20Y%/k*t*) (1 + Bi+dBig)
X (Qi/ 2sq1(sq2 — Qi/ %cqo) +d QlCCI1(Q%/ 2cqa — 5q2)

+ 11 Q25q2(d QY%sq1 — 2cq1 + 2)),
Dp1 = Cr(64dBiQ30;%/x*c%)sq2(d 07 %sq1 — 2cq1 + 2),
D31 = Cr(640Q203%/k*c ") (07%(cq2 — D(sqr — d 07 %cqn)
+ 105/ %5q2(2cq1 — 2 — d Q7 %squ)),
D4y = Cr(32d 0103/3c*¢3) (1 + 2cq1)(—1 + cq2)d’k Q10>
+12(~1+ cg2) 01(2 — 2cq1 + d 07 %sq1)

+3(1 — cqa)k Q2(4 — deqr + 3d 0V %sqy)

+6Q1Q§/2(—2 + 2cq; — dQ}/qul)sqz),

cqr = cosidQ7?), cqp = coshQY?), sq1 =sinhdQY? and sq, = sinh(QY/?).

The roots of (48) are given by

(AtD21+ D31) 1
Mall = - 2272~ TS T 4 0D, 54
2 AuDg  a? oM (&4)

(D11

—— T 24 0. 55
(ADay + D31)a +0a) 9

May? =

The sign of the coefficients of (54) and (55) depends®randd. The coefficient of: 2
in (54) is positive forQ, < 1 and negative foQ, > 1. The marginal curve corresponding to
(54) gives nonzero minimum Marangoni number for nonzero wave number, but the marginal
curve corresponding to (55) gives zero minimum Marangoni number=a0 as the leading
order term of (55) is zero. The marginal stability curve attains a positive minimum value zero
ata = 0. Hence, when Be-= 0, the system is always unstable. In the lighit> 0 (55) reduces
to

(1+Bi)
Cr

Mal? = G1d? + O(a™, (56)

196762.tex; 6/05/1999; 13:06; p.16



The onset of steadyéBard-Marangoni convection in a two-layer systef®1

where
1/2
Gr — 03%cqr — sqz
1="152 :
5 (cqgz—1)

Equation (56) was first obtained by Wilson [11]. Since, there is no term independernih of
(56), when Bo= 0, the system is always unstable as the local (hence global) minimum zero
exists atz = 0 in this case.

(i) Bo # 0 then
When Bo# 0 then

@ _  uDa+ D3y 1

May uDn & +0() (57)

BOD]_]_

May = ———————
2 (AuD21+ D31)

+ 0(@d?. (58)

The coefficient ofz=2 in (57) is positive forQ, < 1 and negative fop, > 1. Similarly, the
leading-order term of (58) is negative whén < 1 and positive whem®, > 1. The marginal

curve corresponding to (57) gives the critical Marangoni number for nonzero wave number
for 0, < 1 and it is checked numerically that the coefficienuéfof (58) is negative when

0, > 1 and therefore foQ, > 1 the marginal curve corresponding to (58) gives a nonzero
critical Marangoni number for a nonzero wave number. In this case only long-wavelength
disturbances are stable with moderate or weak magnetic field beacuse the global minimum for
the marginal stability curve exists for nonzeroln the limitd — 0, (58) reduces to

Bo(1 + Bi) Bo Bo Bi
Ma® = ——— -G 2G1+G 6G,+ G
5 Cr 1+ 2Cer( 1+ 2)+6CrQ2( 1+ G3)
(1+Bi) > } 2 4
— G1(Bo*G4+ 3CrQ,»G + 0 , 59
6CP02 1( 4 0,Gs) |a (a”) (59)
where
G, 2°(05%cq2 + 549
(cq2—1)
Ga — 03%(03%cq2 + 5+ 5q2)
3 — ]
(cq2—1)
Gy =D - 07%(9sq, — 203 %cq, — 0%

(cq2— 1)
Gs =BoQ, +2(4Bo— Q»).
The coefficient of:? in (59) is negative when

Bo?(1+ Bi)G1G4
02(3B0(2G1 + G») + Bo Bi(6G1 + G3) — 3(1+ Bi)G1Gs)

Cr<Cr= (60)
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Table 6. Value of Ci* for different 9> when Bi= 1 and Bo= 1.
(o)) Cr* (o)) Cr* (o)) Cr*

104 806x103 1 786x103 100 378x10°°
1003 806x103 10! 636x103 10° 393x10°°
1002 806x 103 10?7 222x103% 10° 398x10°7
1001 804x10% 103 334x104 100 399x10°8

Cr=0.012 0.011

80

60

MGZC

40

20} |
, !
oboit,. ot 1 1 L . A A N D DT
0 100 200 300 0 100 200 300
Ra, Ra,
(@ (b)

Figure 5. Numerically calculated values of (a) Mlaand (b)a. in the caseQ, = 0, Bo= 1, Bi = 0 plotted as
functions of Ra for a range of values of C& 0-005, 001, 0011 and €012.

Cr=10°

60 Crat

cr=10""

“or cr=10"410"%

Qe

20+

ol 1 1
104 10°2 1 102 10* 108 108

Figure 6. Numerically calculated values of (a) Raand (b)a. in the case Ma = 25, Bo= 1, Bi = 0 plotted as
functions of Q5 for a range of values of Cr.
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107— 301
Cr =10"6
-5 v
105_ Cr =10 S 20
~ Cr :10—1'
g 3
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1%L 10
10 ! ! L L [
_ _ 4 6
0 w0t 100 10 10 10 10

Figure 7. Numerically calculated values of (a) Maand (b)a. in the case Ra= 0, Bo= 1, Bi = 0 plotted as
functions of Q- for a range of values of Cr.

In the limit 0, — 0in (60), we recover the well-known result of Takashima [5] which is

(1+ Bi)Bo?
8(1 + Bi)(15— 2Bo) + 40Bo’

Evidently, asQ, increases the critical Creduces. This implies that for a fixed €r Cr*,
a certain disturbance could be stabilized by choosing a suitable magnetic field. When the
magnetic field is large, even for very small value of iG, for a small deformation of the free
surface, the system is unstable. Comparing the value ofd€different valuesQ, given in
Table 6, and corresponding ‘Gvhen 0, = 0, it is concluded that the magnetic field has no
stabilizing effect on the system when €r0 and Bo# 0.

Critical Ma,. anda, are plotted as function of Ravith 0, = 0,Bo=1,d = 1and Bi=0
for different values of Cr in Figure 5 and it shows the variation in the values of Btada,
as Cr increases compared to the case with 0. Figure 5(a) depicts a jump discontinuity in
May. and it goes to zero for Raround 280. Another interesting feature is that for a double-
layer systenu, is not zero for any Ra unlike a single layer system for Cr lying in-(D5,
0-01) as seen in Figure 5(b). In Figure 6 typical values of.Rada. are plotted as a function
of O, for the case with Be= 1, Ma = 25,d = 1 and Bi= 0 and it shows that they only differ
significantly from those when Cg 0 for unrealistically large values of Cr. The variation of
Ma,. anda, with R = 0, Bo= 1,d = 1 and Bi= 0 when the free surface is deformable
are given in Figure 7 and it is concluded that the lower layer has no stabilizing effect on the
system for deformable free surface, whereas it stabilizes the system for a non-deformable free
surface.

Cr<Cr = (61)

8. Conclusions

In this paper a combination of analytical and numerical techniques have been used to analyse
the effect of a second layer and a magnetic field on the onset of steady Bénard-Marangoni
convection in a two-layer system of conducting fluids subjected to a uniform vertical tem-
perature gradient. It is found that the parameters Cr, Borgpldy an important role on the

onset of steady convection. In the presence of a second layer it is observed that the critical
parameters for the onset of pure Marangoni convection are increased, whereas for the onset
of pure bouyancy convection they are decreased. Further, we have discussed in detail the
behaviour of the critical parameters Ravla,. anda, in different limiting case®, — 0 and

d — 0.
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